Criteria for Sign Regularity of Sets of Matrices*

Jürgen Garloff
Institut für Angewandte Mathematik
Freiburg, West Germany

Submitted by Hans Schneider

Abstract

We consider matrix intervals with respect to a certain "checkerboard" partial ordering. We show that every real matrix contained in a matrix interval is sign-regular if two special matrices taken from that matrix interval are sign-regular.

1. NOTATION AND DEFINITIONS

Let $A=\left(\alpha_{i j}\right)$ be an $n \times n$ matrix. The submatrix of A formed from rows i_{1}, \ldots, i_{k} and columns i_{1}, \ldots, i_{k} will be denoted by

$$
A\left[\begin{array}{c}
i_{1}, \ldots, i_{k} \\
i_{1}, \ldots, i_{k}
\end{array}\right] \text { or } A\left[i_{1}, \ldots, i_{k} ; i_{1}, \ldots, i_{k}\right]
$$

and its determinant by

$$
A\binom{i_{1}, \ldots, i_{k}}{i_{1}, \ldots, i_{k}} \text { or } \quad A\left(i_{1}, \ldots, i_{k} ; i_{1}, \ldots, i_{k}\right) .
$$

The matrix A is called sign-regular ${ }^{1}$ [4, p. 47] if all nonzero k th-order minors of A have the same sign $\sigma_{k}(A), k=1(1) n$ (we set $\sigma_{k}(A):=0$ if all \bar{k} th-order minors vanish). If in this case $\sigma_{k}(A) \geqslant 0, k=1(1) n$, we call A totally nonnegative. We say that A is strictly sign-regular if A is sign-regular and all minors of A are nonzero. The definitions and basic properties of these

[^0]matrices were given in [1]; see also [4]. The matrix A will be said to be inverse-positive if $A^{-1}=\left(\alpha_{i j}^{\prime}\right)$ exists and $\alpha_{i j}^{\prime} \geqslant 0, i, j=1(1) n$.

We define $A^{*} \in \mathbb{R}^{n \times n}$ by $A^{*}:=D A D$, where $D:=\operatorname{diag}(1,-1, \ldots$, $(-1)^{n+1}$). The transformation * is usually called the "checkerboard transformation." As usual, $A \leqslant B$ and $A<B$ for $A, B \in \mathbb{R}^{n \times n}$ will be understood entrywise. Let $A \leqslant^{*} B$ and $A<{ }^{*} B$, respectively, if $A^{*} \leqslant B^{*}$ and $A^{*}<B^{*}$, respectively. The set of matrix intervals with respect to the partial ordering \leqslant^{*} will be denoted by $\|\left(\mathbb{R}^{n \times n}\right)$, and its elements by $[A]=[\underline{A}, \bar{A}], \underline{A}=\left(\underline{\alpha}_{i j}\right)$, $\bar{A}=\left(\bar{\alpha}_{i j}\right) ;[B]=[\underline{B}, \bar{B}]$, etc.

A matrix interval $[A]$ will said to be nonsingular [respectively, (strictly) sign-regular, totally nonnegative] if all the real matrices contained in [A] are nonsingular [respectively, (strictly) sign-regular, totally nonnegative].

2. PRELIMINARY RESULTS

Lemma 1. If $[A] \in \mathbb{D}\left(\mathbb{R}^{n \times n}\right)$ with $\sigma_{n}:=\sigma_{n}(\underline{A})=\sigma_{n}(\bar{A}) \neq 0$ and all the nonzero $(n-1)$-minors of \underline{A} and \bar{A} have the same sign σ_{n-1}, then $\sigma_{n} \sigma_{n-1} A^{*}$ is inverse-positive for any $A \in[A]$; in particular $[A]$ is nonsingular.

Proof. The proof can be easily given by using the formula for the inverse of a matrix in terms of its adjoint matrix and by exploiting the following well-known statement (e.g. [5, Corollary 3.5]): A matrix B is inverse-positive iff there exist inverse-positive matrices \underline{B}, \bar{B} such that $\underline{B} \leqslant B \leqslant \bar{B}$.

Remark. Lemma 1 can be used to bound the set of all solutions of special systems of linear equations with intervals as coefficients [3].

The following lemma shows that the approximation of sign-regular matrices by strictly sign-regular matrices which is given in Satz 17 in [1, p. 311] can be done from above and from below with respect to the partial ordering \leqslant.

Lemma 2. Let the $n \times n$ matrix $A=\left(\alpha_{i j}\right)$ be of rank r and sign-regular. For every $\varepsilon>0$ there exists a strictly sign-regular $n \times n$ matrix $C=\left(\gamma_{i j}\right)$ such that for arbitrary $\tau_{k} \in\{-1,1\}$ we have

$$
\sigma_{k}(C)= \begin{cases}\sigma_{k}(A), & k=1(1) r \tag{1}\\ \tau_{k}, & k=r+1(1) n\end{cases}
$$

arul

$$
\begin{equation*}
0<\sigma_{1}(C)\left(\gamma_{i i}-\alpha_{i j}\right)<\varepsilon, \quad i, j=1(1) n . \tag{2}
\end{equation*}
$$

Proof. We follow the proof given in [1, pp. 308, 310-311]. If $n=1$, the statement holds trivially. We suppose now $n \geqslant 2$. Let e_{i} be the i th unit vector of \mathbb{R}^{n}, i.e. $e_{i}:=\delta_{i}$, where δ_{i} is the usual Kronecker delta. In case $r=0$ replace A by the matrix $\sigma_{1}(C) \varepsilon^{\prime} e_{1} e_{1}^{t}$, where $\varepsilon^{\prime}:=\varepsilon / 3$. If A has exactly one nonzero coefficient, then replace A by $A+\sigma_{1}(A) \varepsilon^{\prime} x y^{t}$, where $x, y \in \mathbb{R}^{n}$ are defined as follows:

$$
\begin{array}{lll}
\text { in case } \sigma_{2}(C)=1, & x:=y:=e_{1} & \text { if } \alpha_{11}=0, \\
& x:=y:=e_{n} & \text { else } \\
\text { in case } \sigma_{2}(C)=-1, & x:=e_{1}, y:=e_{n} & \text { if } \alpha_{1 n}=0, \\
& x:=e_{n}, y:=e_{1} & \text { else. }
\end{array}
$$

Put $F(\eta):=\left(\exp \left[-\eta(i-i)^{2}\right]\right), i, j=1(1) n$, where $\eta>0$. It is known [1, p. 89] that every minor of $F(\eta)$ is positive. Obviously $F(\eta) \rightarrow I$ (identity matrix) as $\eta \rightarrow \infty$. From the Cauchy-Binet formula [1, pp. 11-12] it follows that the matrix $B=\left(\beta_{i j}\right)$ defined by $B:=F(\eta) A F(\eta)$ has only nonzero k th-order minors and satisfies

$$
\begin{equation*}
\sigma_{k}(B)=\sigma_{k}(A), \quad k=1(1) r, \tag{3}
\end{equation*}
$$

and obviously for sufficiently small $\eta>0$

$$
\begin{equation*}
0<\sigma_{1}(A)\left(\beta_{i j}-\alpha_{i j}\right)<\varepsilon^{\prime} . \tag{4}
\end{equation*}
$$

If $r=n$, the matrix B fulfills (1) and (2). If $r<n$ we set $\delta:=\min \left\{\left|\beta_{i j}-\alpha_{i j}\right| \mid\right.$ $i, j=1(1) n\}$. The approximation process of the proof of Satz 17 in [1, p. 3iil] yields a matrix $C=\left(\gamma_{i j}\right)$ satisfying

$$
\sigma_{k}(C)= \begin{cases}\sigma_{k}(B), & k=1(1) r \tag{5}\\ \tau_{k}, & k=r+1(1) n\end{cases}
$$

and

$$
\begin{equation*}
\left|\gamma_{i j}-\beta_{i j}\right|<\delta<\varepsilon^{\prime}, \quad i, j=1(1) n \tag{6}
\end{equation*}
$$

By (3) and (5), the matrix C fulfills the equation (1), and from (4) and (6) we obtain (2).

3. CRITERIA FOR SIGN REGULARITY

Theorem 1. Let $[A] \in \mathbb{Q}\left(\mathbb{R}^{n \times n}\right)$. Then
(i) $[A]$ is strictly sign-regular

if and only if

(ii) \underline{A} and \bar{A} are strictly sign-regular and $\sigma_{k}(\underline{A})=\sigma_{k}(\bar{A}), k=1(1) n$.

Proof. The implication (i) \Rightarrow (ii) holds by the continuity of the determinant. We suppose now (ii) and $A \in[A]$. The case $n=1$ is trivial, and we consider the case $n>1$. Because of Theorem 3.3 in [4, p. 60] it suffices to show that all the minors of A composed from consecutive rows and columns have the same strict $\operatorname{sign} \sigma_{k}$.

Let $p \in\{0,1, \ldots, n-1\}$, and assume without loss of generality $p \geqslant 1$. Then we have for $i, j=1(1) n-p$

$$
\begin{array}{r}
\underline{A}\left[\begin{array}{l}
i, \ldots, i+p \\
i, \ldots, j+p
\end{array}\right]\left\{\begin{array}{c}
\leqslant^{*} \\
* \geqslant
\end{array}\right\} A\left[\begin{array}{c}
i, \ldots, i+p \\
i, \ldots, i+p
\end{array}\right]\left\{\begin{array}{c}
\leqslant^{*} \\
* \geqslant
\end{array}\right\} \bar{A}\left[\begin{array}{c}
i, \ldots, i+p \\
j, \ldots, j+p
\end{array}\right] \\
\text { if } i+j \text { is }\left\{\begin{array}{c}
\text { even } \\
\text { odd }
\end{array}\right\} .
\end{array}
$$

The determinants of these two submatrices of \underline{A} and \bar{A} have the same strict $\operatorname{sign} \sigma_{p+1}$. The same holds for the p th-order minors. It follows from Lemma 1 that

$$
A\left[\begin{array}{l}
i, \ldots, i+p \\
j, \ldots, j+p
\end{array}\right] \text { is nonsingular. }
$$

Finally, for $q, m \in\{1,2, \ldots, n-p\}$

$$
\operatorname{sign} A\binom{i, \ldots, i+p}{i, \ldots, i+p}=\sigma_{p+1}=\operatorname{sign} A\binom{q, \ldots, q+p}{m, \ldots, m+p}
$$

Theorem 2. Let $[A]=[\underline{A}, \bar{A}] \in \square\left(\mathbb{R}^{n \times n}\right)$ satisfy

$$
\begin{array}{lll}
\text { either } & \forall i, j \in\{1, \ldots, n\} & \alpha_{i j}=\bar{\alpha}_{i j} \Rightarrow i+j \text { is even } \\
\text { or } & \forall i, j \in\{1, \ldots, n\} & \underline{\alpha}_{i j}=\bar{\alpha}_{i j} \Rightarrow i+j \text { is odd }
\end{array}
$$

Then
(i) $[A]$ is sign-regular (respectively, sign-regular and nonsingular) and $\sigma_{k}(A) \sigma_{k}(B) \geqslant 0, k=1(1) n$, for all $A, B \in[A]$
if and only if
(ii) \underline{A} and $\overline{\bar{A}}$ are sign-regular (respectively, sign-regular and nonsingular) and $\sigma_{k}(\underline{\bar{A}}) \sigma_{k}(\bar{A}) \geqslant 0, k=1(\mathrm{l}) n$.

Proof. ${ }^{2}$ The statement involving both sign-regular and nonsingular follows immediately from the other part by Lemma 1 .

It suffices to show (ii) \Rightarrow (i) in case $n>1$. Without loss of generality we suppose that $\sigma_{1}(\underline{A}), \sigma_{1}(\bar{A}) \geqslant 0$. By Lemma 2 there exist two sequences of strictly sign-regular matrices, say $\left\{\underline{C}^{(\nu)}\right\},\left\{\bar{C}^{(\nu)}\right\}, \underline{C}^{(\nu)}=\left(\underline{\gamma}_{i j}^{(\nu)}\right), \bar{C}^{(\nu)}=\left(\bar{\gamma}_{i j}^{(\nu)}\right)$, $\nu=1,2, \ldots$, satisfying

$$
\left.\begin{array}{ll}
\lim \underline{C}^{(\nu)}=\underline{A}, & \underline{\alpha}_{i j}<\underline{\gamma}_{i j}^{(\nu)} \\
\lim \bar{C}^{(\nu)}=\bar{A}, & \bar{\alpha}_{i j}<\bar{\gamma}_{i j}^{(\nu)}
\end{array}\right\} \quad i, j=1(1) n, \quad \nu=1,2, \ldots
$$

and

$$
\sigma_{k}\left(\underline{C}^{(\nu)}\right)=\sigma_{k}\left(\bar{C}^{(\mu)}\right), \quad \nu, \mu=1,2, \ldots, \quad k=1(1) n .
$$

We will show that these sequences contain subsequences, say $\left\{\underline{A}^{(\nu)}\right\},\left\{\bar{A}^{(\nu)}\right\}$, with

$$
\left.\begin{array}{rl}
\underline{A}^{(\nu)} & \leqslant * \bar{A}^{(\nu)}, \tag{7}\\
\sigma_{k}\left(\underline{A}^{(\nu)}\right) & =\sigma_{k}\left(\bar{A}^{(\nu)}\right), \quad k=1(1) n
\end{array}\right\} \quad \nu=1,2, \ldots .
$$

For brevity, let

$$
\Gamma:=\left\{(i, i) \in\{1, \ldots, n\}^{2} \mid \underline{\alpha}_{i j}=\bar{\alpha}_{i j}\right\}
$$

For $(i, j) \notin \Gamma$ and $\nu_{0} \leqslant \nu, \nu_{0}$ sufficiently large, we have

$$
\begin{array}{ll}
\underline{\alpha}_{i j}<\underline{\gamma}_{i j}^{(\nu)}<\bar{\alpha}_{i j}<\bar{\gamma}_{i j}^{(\nu)} & \text { if } \\
i+j \text { is even, } \\
\bar{\alpha}_{i j}<\bar{\gamma}_{i j}^{(\nu)}<\underline{\alpha}_{i j}<\underline{\gamma}_{i j}^{(\nu)} & \text { if } \\
i+j \text { is odd. }
\end{array}
$$

[^1]Without loss of generality we suppose that for every $(i, j) \in \Gamma, i+j$ is even. Then there exists $\nu_{1} \geqslant \nu_{0}$ such that

$$
\underline{\alpha}_{i j}=\bar{\alpha}_{i j}<\underline{\gamma}_{i j}^{\left(\nu_{1}\right)} \leqslant \bar{\gamma}_{i j}^{\left(\nu_{0}\right)} \quad \text { for } \quad(i, j) \in \Gamma .
$$

Let $\bar{A}^{(1)}:=\bar{C}^{\left(\nu_{0}\right)}, \underline{A}^{(1)}:=\underline{C}^{\left(\nu_{1}\right)}, \bar{A}^{(2)}:=\bar{C}^{\left(\nu_{1}\right)}$. We continue in this manner and obtain the subsequences $\left\{\underline{A}^{(\nu)}\right\},\left\{\bar{A}^{(\nu)}\right\}$ satisfying (7).

From Theorem 1 it follows that the interval $\left[\underline{A}^{(\nu)}, \bar{A}^{(\nu)}\right]$ is strictly sign-regular. By taking the limit, the proof of the theorem is completed.

Remark. If [A] is sign-regular and nonsingular, we have already $\sigma_{k}(A) \sigma_{k}(B) \geqslant 0, k=1(1) n$, for all $A, B \in[A]$. This follows from the continuity of the function

$$
\sum_{\substack{i_{1}<\cdots<i_{k} \\ i_{1}<\cdots<i_{k}}} A\binom{i_{1}, \ldots, i_{k}}{i_{1}, \ldots, i_{k}} \quad \text { for fixed } \quad k \in\{1, \ldots, n\} .
$$

In a similar way one shows

Theorem 3. Let $[A]=[\underline{A}, \bar{A}] \in \mathbb{\square}\left(\mathbb{R}^{n \times n}\right)$ be sign-regular and $\sigma_{k}(A) \sigma_{k}(B) \geqslant 0, k=1(1) n$, for all $A, B \in[A]$. Furthermore, suppose $\underline{A}<{ }^{*} \bar{A}$. Then any $A \in[A]$ with $\underline{A}<^{*} A<{ }^{*} \bar{A}$ is strictly sign-regular.

The matrix interval $[A]=[\underline{A}, \bar{A}]:=\left[e_{4} e_{1}^{t}, I\right] \in \mathbb{O}\left(\mathbb{R}^{\mathbf{4} \times \mathbf{4}}\right)$, where e_{4} and e_{1} are respectively the fourth and the first unit vector of \mathbb{R}^{4} and where I is the identity matrix, has totally nonnegative boundary matrices \underline{A} and \bar{A}. But [A] contains the matrix $A:=I+e_{4} e_{1}^{t}$, which is nonsingular, but not totally nonnegative because $A(2,4,1,2)<0$. Thus this example shows that the statement of Theorem 2 involving merely sign regularity is not true without the assumption (*). Note that \bar{A} is nonsingular.

Conjecture. The matrix interval [A] is nonsingular and totally nonnegative iff \underline{A} and \bar{A} are nonsingular and totally nonnegative.

We have tried hard, without success, to prove this conjecture. However, the conjecture is true for $n \leqslant 5$, so that the construction of a counterexample is nontrivial. Furthermore, the conjecture is true in the following special case. ${ }^{3}$

[^2]Theorem 4. Let $[A]=[\underline{A}, \bar{A}] \in \mathbb{d}\left(\mathbb{R}^{n \times n}\right)$ be tridiagonal, i.e., $0=\underline{\alpha}_{i j}=$ $\bar{\alpha}_{i j}$ if $\mid i-i \perp>1, i, j=1(1) n$. Then $[A]$ is nonsingular and totally nonnegative iff \underline{A} and \bar{A} are nonsingular and totally nonnegative.

Proof. Let the matrix interval [A] be tridiagonal, let \underline{A} and \bar{A} be nonsingular and totally nonnegative, and let $A \in[A]$. Then $A \geqslant 0$. By Hadamard's inequality (see Satz 8 in [1, p. 108]) every leading principal minor of \underline{A} and $\bar{A}[$ i.e. $\underline{A}(1, \ldots, i ; 1, \ldots, i)$ and $\bar{A}(1, \ldots, i ; 1, \ldots, i)]$ is positive. Therefore, any leading principal submatrix of \underline{A} and \bar{A} is totally nonnegative and nonsingular. Then by Lemma 1 and the continuity of the determinant, it follows that also the leading principal minors of A are positive. By a criterion in [1, p. 94] A is totally nonnegative.

We conclude this section with a theorem concerning the existence of totally nonnegative matrices.

Theorem 5. Suppose that $n \geqslant 3$, A is a nonsingular totally nonnegative matrix, and there exist $i \in\{1, \ldots, n-2\}, k \in\{2,3, \ldots, n-i\}$ such that

$$
\begin{equation*}
A\binom{i+1, \ldots, i+k}{i, \ldots, i+k-1}=0 \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
A\binom{i, \ldots, i+k-1}{i+1, \ldots, i+k}=0 \tag{9}
\end{equation*}
$$

Then there exists no totally nonnegative matrix B with $A<* B$.

Proof. Suppose $A=\left(\alpha_{i j}\right)$ is a nonsingular totally nonnegative matrix and (8) holds. By Corollary 9.1 in [4, p. 89], every principal minor of A is positive. Suppose $B=\left(\beta_{i j}\right)$ is a totally nonnegative matrix with $A<{ }^{*} B$. Then $\gamma:=$ $\left|\beta_{i+k, i}-\alpha_{i+k, i}\right|>0$. From Lemma II in [7] it follows that

$$
\begin{aligned}
& \operatorname{det}\left(A\left[\begin{array}{c}
i+1, \ldots, i+k \\
i, \ldots, i+k-1
\end{array}\right]+(-1)^{2 i+k} \gamma e_{k} e_{1}^{t}\right) \\
&=-\gamma A\binom{i+1, \ldots, i+k-1}{i+1, \ldots, i+k-1}<0
\end{aligned}
$$

where e_{1} and e_{k} are respectively the first and the k th unit vector of \mathbb{R}^{k}. The matrix on the left-hand side of the equation is a submatrix of a matrix contained in $[A, B]$. By Theorem 2, we have thus arrived at a contradiction. If (9) holds we proceed in a similar way.

Example. Let the real numbers ψ_{i} and $\chi_{i}, i=1(1) n$, have the same strict sign and

$$
\frac{\psi_{1}}{\chi_{1}}<\frac{\psi_{2}}{\chi_{2}}<\cdots<\frac{\psi_{n}}{\chi_{n}}
$$

Then the Green's matrix [4, p. 110] $G=\left(\gamma_{i j}\right)$ defined by

$$
\gamma_{i j}:= \begin{cases}\psi_{i} \chi_{i} & \text { if } \quad i \leqslant i \\ \psi_{i} \chi_{i} & \text { if } \quad i \geqslant j\end{cases}
$$

is nonsingular and totally nonnegative. Moreover, by [1, p. 90] Equations (8) and (9) hold.

This paper is an extension of some results given in the author's dissertation [2] and in [3].

REFERENCES

1 F. R. Gantmacher and M. G. Krein, Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme, Akademie-Verlag, Berlin, 1960.
2 J. Garloff, Untersuchungen zur Intervallinterpolation, Dissertation, Freiburger Intervall-Berichte $80 / 5$, Institut für Angewandte Mathematik, Universität Freiburg i. Br., 1980.
3 J. Garloff, Totally nonnegative interval matrices, in Interval Mathematics 1980 (K. Nickel, Ed.), Academic, New York, 1980.
4 S. Karlin, Total Positivity, Vol. I, Stanford U.P., Stanford, 1968.
5 J. R. Kuttler, A fourth-order finite-difference approximation for the fixed membrane eigenproblem, Math. Comp. 25:237-256 (1971).
6 K. Metelmann, Ein Kriterium für den Nachweis der Totalnichtnegativitäl von Bandmatrizen, Linear Algebra Appl. 7:163-171 (1973).
7 W. E. Roth, On the characteristic polynomial of the product of two matrices, Proc. Amer. Math. Soc. 5:1-3 (1954).

[^0]: *Dedicated to Professor R. Krawczyk on the occasion of his sixtieth birthday.
 ${ }^{1}$ It should be noted that the German equivalent of "sign-regular," namely "zeichenregular," is used in a slightly different sense by Gantmacher and Krein in [1, p. 86].

[^1]: ${ }^{2}$ The statement of Satz 4.5 (i.e. Theorem 2 formulated for the special case of totally nonnegative matrices) in [2] is incomplete. The assumption ($*$) is missing there.

[^2]: ${ }^{3}$ The conjecture is also true if $\underline{A}, \bar{A} \in T(r, s)$ with $T(r, s)$ from [6], i.e., \underline{A}, \bar{A} are band matrices with special nonsingular totally nonnegative submatrices.

