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ABSTRACT 

We consider matrix intervals with respect to a certain “checkerboard” partial 
ordering. We show that every real matrix contained in a matrix interval is sign-regular 
if two special matrices taken from that matrix interval are sign-regular. 

1. NOTATION AND DEFINITIONS 

Let A = (aii) be an n X n matrix. The submatrix of A formed from rows 

al,..., i, and columns il,. . . , jk will be denoted by 

or A[i, ,..., i,; il ,..., jk], 

and its determinant by 

or A(i, ~~~~~ik;i~~.~.~jk). 

The matrix A is called sign-regular’ [4, p. 471 if all nonzero kth-order minors 
of A have the same sign uk( A), k = l( 1)n (we set uk( A) : = 0 if all kth-order 
minors vanish). If in this case ak(A) 2 0, k = l(l)n, we call A totally 
nonnegative. We say that A is strictly sign-regular if A is sign-regular and all 
minors of A are nonzero. The definitions and basic properties of these 

‘Dedicated to Professor R. Krawczyk on the occasion of his sixtieth birthday. 

‘It should be noted that the German equivalent of “sign-regular,” namely “zeichenregul~,” 
is used in a slightly different sense by Gantmacher and Krein in [l, p. 861. 
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matrices were given in [l]; see also [4]. The matrix A will be said to be 
inverse-positive if A-’ = (+) exists and aii > 0, i, i = l(l)n. 

We define A* E R “X” by A* : = DAD, where D : = diag(1, - 1,. . . , 
(- l)n+l). The transformation * is usually called the “checkerboard transfor- 
mation.” As usual, A < B and A < B for A, BE RnXn will be understood 
entrywise. Let A<*B and A<*B, respectively, if A*< B* and A*< B*, 
respectively. The set of matrix intervals with respect to the partial ordering 
< * will be denoted b_y O([w “xn), and its elements by [A] = [A, x], A_ = ((yii), 
A=(sii); [B] = [B, B], etc. 

A matrix interval [A] wiIl said to be nonsingular [respectively, (strictly) 
sign-regular, totally nonnegative] if all the real matrices contained in [A] are 
nonsingular [respectively, (strictly) sign-regular, totally nonnegative]. 

2. PRELIMINARY RESULTS 

LEMMA 1. Zf[A]~!l(IW”~“)_with a,:=~,,(~)=~,(~)#0 and all the 
nonzero (n - l)-mirwrs of A_ and A have the same sign on_ 1, then u,,u,_ 1A* is 
inverse-positive for any A E [A]; in particular [A] is nonsingular. 

Proof. The proof can be easily given by using the formula for the inverse 
of a matrix in terms of its adjoint matrix and by exploiting the following 
well-known statement (e.g. [S, Corollary 3.51): A matrix B is inverse-positive 
iff there exist inverse-positive matrices B, Z? such that B f B G g n - 

REMARK. Lemma 1 can be used to bound the set of all solutions of 
special systems of linearequations with intervals as coefficients [3]. 

The following lemma shows that the approximation of sign-regular matrices 
by strictly sign-regular matrices which is given in Satz 17 in [l, p. 3111 can be 
done from above and from below with respect to the partial ordering G. 

LEMMA 2. Let the n X n matrix A = (aji) be of rank r and sign-regular. 
Fur every E > 0 there exists a strictly sign-regular n X n matrix C = (yii) such 
that for arbitrary rk6 { - 1, l} we have 

‘TkW = 
ok(A), k = l(l)r, 
'k, k=r+l(l)n, 
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and 

o<a,(C)(Yij-aij)<E, i,i=l(l)n. (2) 

Proof. We follow the proof given in [l, pp. 308, 310-3111. If n = 1, the 
statement holds trivially. We suppose now 12 2 2. Let ei be the ith unit vector 
of Iw “, i.e. e, : = Si, where 6; is the usual Kronecker delta. In case T = 0 replace 
A by the matrix a,(C)e’e,ei, where E’: = E/S. If A has exactly one nonzero 
coefficient, then replace A by A + ai(A)e’xy’, where x, ZJE Iw” are defined as 
follows: 

in case us(C) = 1, x: =y: =e, if (~ir=O, 

x: = y: =e, else ; 

incase us(C)= -1, x: =e,, y: =e, if (Yin=O, 

x: =e,, y: =e, else. 

Put F(q): = (exp[ - ~(i - i)‘]), i, i = l(l)n, where 17 > 0. It is known [l, p. 
891 that every minor of F(q) is positive. Obviously F(q) - Z (identity matrix) 
as 17 + co. From the Cauchy-Binet formula [l, pp. 11-121 it follows that the 
matrix B = (&) defined by B: = F(q)AF(q) has only nonzero kth-order 
minors and satisfies 

cd@ = udA)> k = l(l)r, (3) 

and obviously for sufficiently small rl> 0 

(4) 

If T = n, the matrix B fulfills (1) and (2). If r < R we set 6: = min{ 1 pii - aii 1 1 
i, i = l(l)n}. Th e approximation process of the proof of Satz 17 in [l, p. 3111 
yields a matrix C = ( yi i) satisfying 

UkW) = 
uk(B), k = l(l)r, 
'k ) 

k=r+l(l)n, 

and 

lYij_Pijl <6<E’t i, i= l(l)n. (6) 

By (3) and (5), the matrix C fulfills the equation (l), and from (4) and (6) we 
obtain (2). II 
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3. CRITERIA FOR SIGN REGULARITY 

THEOREM 1. Let [A] E O((w nXn). Then 

(i) [A] is strictly sign-regular 

if and only if 

(ii) 4 and A are strictly sign-regular and uk( 4) = uk( A), k = l(l)n. 

Proof. The implication (i) *(ii) holds by the continuity of the determi- 
nant. We suppose now (ii) and AE [A]. The case n = 1 is trivial, and we 
consider the case n > 1. Because of Theorem 3.3 in [4, p. 601 it suffices to 
show that alI the minors of A composed from consecutive rows and columns 

have the same strict sign uk. 
LetpE{O,l,..., n - l}, and assume without loss of generality p 2 1. Then 

we have for i, i = l(l)n - p 

if i+jis 
even 

t I odd ’ 

The determinants of these two submatrices of 4 and A have the same strict 
sign u,+i. The same holds for the pth-order minors. It follows from Lemma 1 
that 

A[ il::::jri] isnonsingtdar. 

FinaIly,forg,mE{1,2,...,n-p) 

THEOREM 2. Let [A] = [A, A] E O(Iw nXn) satisfy 

either Vi,jE {l,...,n} gii=Zii +. i+iiseven, 

or Vi,jE {l,...,n} 2ti = Ei, = i + i is odd. 
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(i) [A] is sign-regular (respectively, sign-regular and nonsingular) and 
a,(A)a,(B)> 0, k = l(l)n, for all A, BE [A] 

if and only if 

(ii) 4 and 5 are sign-regular (respectively, sign-regular and nonsingular) 
and uk( A)u,( A) 2 0, k = l(l)n. 

Proof. s The statement involving both sign-regular and nonsingular fol- 
lows immediately from the other part by Lemma 1. 

It suffices to show (ii) q(i) in case n > 1. Without loss of generality we 
suppose that a,( A), ui( A> 3 0. By Lemma 2 there exist two sequences of 
strictly sign-regular matrices, say {_C(“‘}, {0”)}, Cc”) = ($;‘), 0’) = ($y)), 
v = 1,2,. . . , satisfying 

limC(” = 4, - ‘yii < 1::’ 

hmC(V(“’ = x z.. < y!y) 
1 

i,j=l(l)n, v=1,2 ,..., 

’ 11 17 

and 

u,(QU’) = u,(P), v,/J=1,2 ,...> k = l(l)n. 

We will show that these sequences contain subsequences, say {A(‘)}, {z’“‘}, 
with 

A’“’ < *xc’“‘, 

u,(&G)) = u,(~“)), k= l(l)n 
v=1,2 )... 

For brevity, let 

T:={(i,i)E{l ,....n}2~~ij=Zij). 

For (i, i) @ r and v0 G v, v, sufficiently large, we have 

a..<y!Y)<5..<jGY) 
--t7 -17 11 17 

if i + i is even, 

(y..<y!.y)<(y..<y!v) 
17 11 --I7 -17 

if i-tjisodd. 

‘The statement of Satz 4.5 (i.e. Theorem 2 formulated for the special 
nonnegative matrices) in [2] is incomplete. The assumption (*) is missing there. 

(7) 

case of totally 
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Without loss of generality we suppose that for every (i, i) E I, i + i is even. 
Then there exists vi > v0 such that 

(y,, = g.. < y!YI’ -== -(vg) 
--I1 11 -1’) 1 Yij for (i,i)Er. 

Let $(‘): = (y”‘, A(1): = CC”l,, $2): = @d* w e continue in this manner and 
obtain the subsequences ?&‘I}, {;i”‘)} satisfying (7). 

From Theorem 1 it follows that the interval [A(“), z”)] is strictly sign-reg- 
ular. By taking the limit, the proof of the theorem is completed. n 

REMARK. If [A] is sign-regular and nonsingular, we have already 
a,(A)a,(B) > 0, k = l(1) n , f or all A, BE [A]. This follows from the continu- 
ity of the function 

forfixed kE{l,...,n}. 

In a similar way one shows 

THEOREM 3. Let [A] = [A_, A] E 0 (Rnx”) be sign-regular and 
uk( A)a,( B) 2 0, k = l(l)n, for all A, BE [A]. Furthermore, suppose A < * A. 
Then any A E [A] with 4 < * A < * A is strictly sign-regular. 

The matrix interval [A] = [A, A]: = [e,e:, Z]EI([W~~~), where e, and ei 
are respectively the fourth and the first unit vector of Iw4 and where Z is the 
identity matrix, has totally nonnegative boundary matrices 4 and A. But [A] 
contains the matrix A: = Z + e4ei, which is nonsingular, but not totally 
nonnegative because A(2,4; 1,2) < 0. Thus this example shows that the state- 
ment of Theorem 2 involving merely sign regularity is not true without the 
assumption ( * ). Note that A is nonsingular. 

CONJECTURE. The matrix interval [A] is nonsingular and totally non- 
negative iff A and A are nonsingular and totally nonnegative. - 

We have tried hard, without success, to prove this conjecture. However, the 
conjecture is true for n < 5, so that the construction of a counterexample is 
nontrivial. Furthermore, the conjecture is true in the following special case.3 

3The conjecture is also true if 4, AE T(r, S) with T(r, S) from [6], i.e., 4, x are band 

matrices with special nonsingular totally nonnegative submatrices. 
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THEOREM 4. Let [A] = [A, x] E I(08 “““) be tridiagonal, i.e., 0 = aii = 
~iii~li-iL>l,i,j=l(l) n. Then [A] is nonsingular and totally nonnegative 
iff 4 and A are nonsingular and totally nonnegative. 

Proof. Let the matrix interval [A] be tridiagonal, let A_ and x be 
nonsingular and totally nonnegative, and let AE [A]. Then A a 0. By 
Hadamard’s inequality (see Satz 8 in [l, p. 1081) every leading principal 
minor of 4 and A [i.e. A(l,. . .,i; 1,. . . ,i) and x(1,.. . ,i; 1,. . .,i)] is positive. 
Therefore, any leading principal submatrix of A and Ais totally nonnegative 
and nonsingular. Then by Lemma 1 and the continuity of the determinant, it 
follows that also the leading principal minors of A are positive. By a criterion 
in [l, p. 941 A is totally nonnegative. n 

We conclude this section with a theorem concerning the existence of 
totally nonnegative matrices. 

THEOREM 5. Suppose that n 3 3, A is a nonsingular totally nonnegative 
matrix,andthereexistiE{l,..., n-2}, kE{2,3 ,..., n-i} such that 

A 
ilo- 

(9) 

Then there exists no totally nonnegative matrix B with A < *B. 

Proof. Suppose A = (cuii) is a nonsingular totally nonnegative matrix and 
(8) holds. By Corollary 9.1 in [4, p. 891, every principal minor of A is positive. 
Suppose B = ( pij) is a totally nonnegative matrix with A < *B. Then y : = 

IPi+k,*-ai+k,i ] > 0. From Lemma II in [7] it follows that 

i+l,...,i+k-1 

,...,i+k-1 
< 0, 
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where e, and ek are respectively the first and the kth unit vector of Rk. The 
matrix on the left-hand side of the equation is a submatrix of a matrix 
contained in [A, B]. By Theorem 2, we have thus arrived at a contradiction. 
If (9) holds we proceed in a similar way. n 

EXAMPLE. Let the real numbers $i and xi, i = l(l)n, have the same 

strict sign and 

fi<cz<...<& 
Xl x2 x, ’ 

Then the Green’s matrix [4, p. 1101 G = (yii) defined by 

is nonsingular and totally nonnegative. Moreover, by [l, p. 901 Equations (8) 
and (9) hold. 

This paper is an extension of some results given in the author’s disserta- 
tion [2] and in [3]. 
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