Criteria for Sign Regularity of Sets of Matrices*

Jürgen Garloff Institut für Angewandte Mathematik Freiburg, West Germany

Submitted by Hans Schneider

ABSTRACT

We consider matrix intervals with respect to a certain "checkerboard" partial ordering. We show that every real matrix contained in a matrix interval is sign-regular if two special matrices taken from that matrix interval are sign-regular.

1. NOTATION AND DEFINITIONS

Let $A = (\alpha_{ij})$ be an $n \times n$ matrix. The submatrix of A formed from rows i_1, \ldots, i_k and columns j_1, \ldots, j_k will be denoted by

$$A\begin{bmatrix}i_1,\ldots,i_k\\j_1,\ldots,j_k\end{bmatrix} \quad \text{or} \quad A[i_1,\ldots,i_k;j_1,\ldots,j_k],$$

and its determinant by

$$Aigg(egin{array}{c} i_1,\ldots,i_k\ j_1,\ldots,j_k \end{pmatrix} \quad ext{or} \quad A(i_1,\ldots,i_k;j_1,\ldots,j_k).$$

The matrix A is called sign-regular¹ [4, p. 47] if all nonzero kth-order minors of A have the same sign $\sigma_k(A)$, k = 1(1)n (we set $\sigma_k(A) := 0$ if all kth-order minors vanish). If in this case $\sigma_k(A) \ge 0$, k = 1(1)n, we call A totally nonnegative. We say that A is strictly sign-regular if A is sign-regular and all minors of A are nonzero. The definitions and basic properties of these

LINEAR ALGEBRA AND ITS APPLICATIONS 44:153-160 (1982)

0024 - 3795 / 82 / 030153 + 8

153

^{*}Dedicated to Professor R. Krawczyk on the occasion of his sixtieth birthday.

¹It should be noted that the German equivalent of "sign-regular," namely "zeichenregulär," is used in a slightly different sense by Gantmacher and Krein in [1, p. 86].

[©] Elsevier Science Publishing Co., Inc., 1982

⁵² Vanderbilt Ave., New York, NY 10017

matrices were given in [1]; see also [4]. The matrix A will be said to be inverse-positive if $A^{-1} = (\alpha'_{ij})$ exists and $\alpha'_{ij} \ge 0$, i, j = 1(1)n. We define $A^* \in \mathbb{R}^{n \times n}$ by $A^* := DAD$, where D := diag(1, -1, ..., n)

We define $A^* \in \mathbb{R}^{n \times n}$ by $A^* := DAD$, where $D := \text{diag}(1, -1, ..., (-1)^{n+1})$. The transformation * is usually called the "checkerboard transformation." As usual, $A \leq B$ and A < B for $A, B \in \mathbb{R}^{n \times n}$ will be understood entrywise. Let $A \leq *B$ and A < *B, respectively, if $A^* \leq B^*$ and $A^* < B^*$, respectively. The set of matrix intervals with respect to the partial ordering $\leq *$ will be denoted by $\mathbb{I}(\mathbb{R}^{n \times n})$, and its elements by $[A] = [\underline{A}, \overline{A}], \underline{A} = (\underline{\alpha}_{ij}), \overline{A} = (\overline{\alpha}_{ij}); [B] = [\underline{B}, \overline{B}]$, etc.

A matrix interval [A] will said to be nonsingular [respectively, (strictly) sign-regular, totally nonnegative] if all the real matrices contained in [A] are nonsingular [respectively, (strictly) sign-regular, totally nonnegative].

2. PRELIMINARY RESULTS

LEMMA 1. If $[A] \in \mathbb{I}(\mathbb{R}^{n \times n})$ with $\sigma_n := \sigma_n(\underline{A}) = \sigma_n(\overline{A}) \neq 0$ and all the nonzero (n-1)-minors of \underline{A} and \overline{A} have the same sign σ_{n-1} , then $\sigma_n \sigma_{n-1} A^*$ is inverse-positive for any $A \in [A]$; in particular [A] is nonsingular.

Proof. The proof can be easily given by using the formula for the inverse of a matrix in terms of its adjoint matrix and by exploiting the following well-known statement (e.g. [5, Corollary 3.5]): A matrix B is inverse-positive iff there exist inverse-positive matrices $\underline{B}, \overline{B}$ such that $\underline{B} \leq B \leq \overline{B}$.

REMARK. Lemma 1 can be used to bound the set of all solutions of special systems of linear equations with intervals as coefficients [3].

The following lemma shows that the approximation of sign-regular matrices by strictly sign-regular matrices which is given in Satz 17 in [1, p. 311] can be done from above and from below with respect to the partial ordering \leq .

LEMMA 2. Let the $n \times n$ matrix $A = (\alpha_{ij})$ be of rank r and sign-regular. For every $\varepsilon > 0$ there exists a strictly sign-regular $n \times n$ matrix $C = (\gamma_{ij})$ such that for arbitrary $\tau_k \in \{-1, 1\}$ we have

$$\sigma_k(C) = \begin{cases} \sigma_k(A), & k = 1(1)r, \\ \tau_k, & k = r + 1(1)n, \end{cases}$$
(1)

and

$$0 < \sigma_1(C)(\gamma_{ij} - \alpha_{ij}) < \varepsilon, \qquad i, j = 1(1)n.$$
(2)

Proof. We follow the proof given in [1, pp. 308, 310-311]. If n = 1, the statement holds trivially. We suppose now $n \ge 2$. Let e_i be the *i*th unit vector of \mathbb{R}^n , i.e. $e_i := \delta_i$, where δ_i is the usual Kronecker delta. In case r = 0 replace A by the matrix $\sigma_1(C)\varepsilon'e_1e_1^t$, where $\varepsilon' := \varepsilon/3$. If A has exactly one nonzero coefficient, then replace A by $A + \sigma_1(A)\varepsilon'xy^t$, where $x, y \in \mathbb{R}^n$ are defined as follows:

in case
$$\sigma_2(C) = 1$$
, $x := y := e_1$ if $\alpha_{11} = 0$,
 $x := y := e_n$ else;
in case $\sigma_2(C) = -1$, $x := e_1$, $y := e_n$ if $\alpha_{1n} = 0$,
 $x := e_n$, $y := e_1$ else.

Put $F(\eta) := (\exp[-\eta(i-j)^2])$, i, j = 1(1)n, where $\eta > 0$. It is known [1, p. 89] that every minor of $F(\eta)$ is positive. Obviously $F(\eta) \to I$ (identity matrix) as $\eta \to \infty$. From the Cauchy-Binet formula [1, pp. 11–12] it follows that the matrix $B = (\beta_{ij})$ defined by $B := F(\eta)AF(\eta)$ has only nonzero kth-order minors and satisfies

$$\sigma_k(B) = \sigma_k(A), \qquad k = 1(1)r, \tag{3}$$

and obviously for sufficiently small $\eta > 0$

$$0 < \sigma_1(A) \left(\beta_{ij} - \alpha_{ij} \right) < \varepsilon'. \tag{4}$$

If r = n, the matrix *B* fulfills (1) and (2). If r < n we set $\delta := \min\{|\beta_{ij} - \alpha_{ij}| | i, j = 1(1)n\}$. The approximation process of the proof of Satz 17 in [1, p. 311] yields a matrix $C = (\gamma_{ij})$ satisfying

$$\sigma_k(C) = \begin{cases} \sigma_k(B), & k = 1(1)r, \\ \tau_k, & k = r + 1(1)n, \end{cases}$$
(5)

and

$$|\gamma_{ij} - \beta_{ij}| < \delta < \varepsilon', \qquad i, j = 1(1)n.$$
(6)

By (3) and (5), the matrix C fulfills the equation (1), and from (4) and (6) we obtain (2).

3. CRITERIA FOR SIGN REGULARITY

THEOREM 1. Let $[A] \in \mathbb{I}(\mathbb{R}^{n \times n})$. Then

(i) [A] is strictly sign-regular

if and only if

(ii) <u>A</u> and \overline{A} are strictly sign-regular and $\sigma_k(\underline{A}) = \sigma_k(\overline{A}), k = 1(1)n$.

Proof. The implication (i) \Rightarrow (ii) holds by the continuity of the determinant. We suppose now (ii) and $A \in [A]$. The case n = 1 is trivial, and we consider the case n > 1. Because of Theorem 3.3 in [4, p. 60] it suffices to show that all the minors of A composed from consecutive rows and columns have the same strict sign σ_k .

Let $p \in \{0, 1, ..., n-1\}$, and assume without loss of generality $p \ge 1$. Then we have for i, j = l(1)n - p

$$\underline{A}\begin{bmatrix}i,\ldots,i+p\\j,\ldots,j+p\end{bmatrix}\begin{Bmatrix}\leq **\geqslant \end{Bmatrix}A\begin{bmatrix}i,\ldots,i+p\\j,\ldots,j+p\end{bmatrix}\begin{Bmatrix}\leq **\geqslant \end{Bmatrix}\overline{A}\begin{bmatrix}i,\ldots,i+p\\j,\ldots,j+p\end{bmatrix}$$
if $i+j$ is $\begin{Bmatrix}$ even odd $\end{Bmatrix}$.

The determinants of these two submatrices of \underline{A} and \overline{A} have the same strict sign σ_{p+1} . The same holds for the *p*th-order minors. It follows from Lemma 1 that

$$Aiggl[egin{array}{c} i,\ldots,i+p\ j,\ldots,j+p \end{array}iggr] ext{ is nonsingular.}$$

Finally, for $q, m \in \{1, 2, ..., n - p\}$

$$\operatorname{sign} A\left(\frac{i,\ldots,i+p}{j,\ldots,j+p}\right) = \sigma_{p+1} = \operatorname{sign} A\left(\frac{q,\ldots,q+p}{m,\ldots,m+p}\right).$$

THEOREM 2. Let $[A] = [\underline{A}, \overline{A}] \in \mathbb{I}(\mathbb{R}^{n \times n})$ satisfy

either $\forall i, j \in \{1, ..., n\}$ $\underline{\alpha}_{ij} = \overline{\alpha}_{ij} \Rightarrow i + j \text{ is even},$

or $\forall i, j \in \{1, \dots, n\}$ $\underline{\alpha}_{ij} = \overline{\alpha}_{ij} \Rightarrow i + j \text{ is odd}.$

Then

(i) [A] is sign-regular (respectively, sign-regular and nonsingular) and $\sigma_k(A)\sigma_k(B) \ge 0, k = l(1)n$, for all $A, B \in [A]$

if and only if

(ii) <u>A</u> and <u>A</u> are sign-regular (respectively, sign-regular and nonsingular) and $\sigma_k(\underline{A})\sigma_k(\overline{A}) \ge 0$, k = l(1)n.

 $Proof.^2$ The statement involving both sign-regular and nonsingular follows immediately from the other part by Lemma 1.

It suffices to show (ii) \Rightarrow (i) in case n > 1. Without loss of generality we suppose that $\sigma_1(\underline{A}), \sigma_1(\overline{A}) \ge 0$. By Lemma 2 there exist two sequences of strictly sign-regular matrices, say $\{\underline{C}^{(\nu)}\}, \{\overline{C}^{(\nu)}\}, \underline{C}^{(\nu)} = (\underline{\gamma}_{ij}^{(\nu)}), \overline{C}^{(\nu)} = (\overline{\gamma}_{ij}^{(\nu)}), \nu = 1, 2, \dots$, satisfying

$$\lim_{i \to i} \underline{C}^{(\nu)} = \underline{A}, \quad \underline{\alpha}_{ij} < \underline{\gamma}_{ij}^{(\nu)} \\ \lim_{i \to i} \overline{C}^{(\nu)} = \overline{A}, \quad \overline{\alpha}_{ij} < \overline{\gamma}_{ij}^{(\nu)}$$
 $i, j = 1(1)n, \quad \nu = 1, 2, \dots,$

and

$$\sigma_k(\underline{C}^{(\nu)}) = \sigma_k(\overline{C}^{(\mu)}), \qquad \nu, \mu = 1, 2, \dots, \quad k = 1(1)n.$$

We will show that these sequences contain subsequences, say $\{\underline{A}^{(\nu)}\}, \{\overline{A}^{(\nu)}\},$ with

$$\frac{\underline{A}^{(\nu)} \leqslant * \overline{A}^{(\nu)}}{\sigma_k(\underline{A}^{(\nu)}) = \sigma_k(\overline{A}^{(\nu)}), \quad k = 1(1)n} \bigg\} \qquad \nu = 1, 2, \dots.$$
(7)

For brevity, let

$$\Gamma:=\left\{(i,j)\in\{1,\ldots,n\}^2|\underline{\alpha}_{ij}=\overline{\alpha}_{ij}\right\}.$$

For $(i, j) \notin \Gamma$ and $v_0 \leq v$, v_0 sufficiently large, we have

$$\underline{\alpha}_{ij} \leq \underline{\gamma}_{ij}^{(\nu)} < \overline{\alpha}_{ij} < \overline{\gamma}_{ij}^{(\nu)} \qquad \text{if} \quad i+j \text{ is even},$$

$$\overline{\alpha}_{ij} < \overline{\gamma}_{ij}^{(\nu)} < \underline{\alpha}_{ij} < \underline{\gamma}_{ij}^{(\nu)} \qquad \text{if} \quad i+j \text{ is odd}.$$

²The statement of Satz 4.5 (i.e. Theorem 2 formulated for the special case of totally nonnegative matrices) in [2] is incomplete. The assumption (*) is missing there.

Without loss of generality we suppose that for every $(i, j) \in \Gamma$, i + j is even. Then there exists $v_1 \ge v_0$ such that

$$\underline{\alpha}_{ij} = \overline{\alpha}_{ij} < \gamma_{ij}^{(\nu_1)} \leq \overline{\gamma}_{ij}^{(\nu_0)} \quad \text{for} \quad (i,j) \in \Gamma.$$

Let $\overline{A}^{(1)} := \overline{C}^{(\nu_0)}, A^{(1)} := C^{(\nu_1)}, \overline{A}^{(2)} := \overline{C}^{(\nu_1)}$. We continue in this manner and obtain the subsequences $\overline{\{\underline{A}^{(\nu)}\}}, \{\overline{A}^{(\nu)}\}\$ satisfying (7).

From Theorem 1 it follows that the interval $[A^{(\nu)}, \overline{A}^{(\nu)}]$ is strictly sign-regular. By taking the limit, the proof of the theorem is completed.

REMARK. If [A] is sign-regular and nonsingular, we have already $\sigma_k(A)\sigma_k(B) \ge 0, k = l(1)n$, for all $A, B \in [A]$. This follows from the continuity of the function

$$\sum_{\substack{i_1 < \cdots < i_k \\ j_1 < \cdots < j_k}} A\!\begin{pmatrix} i_1, \dots, i_k \\ j_1, \dots, j_k \end{pmatrix} \quad \text{for fixed} \quad k \in \{1, \dots, n\}.$$

In a similar way one shows

i

THEOREM 3. Let $[A] = [\underline{A}, \overline{A}] \in \mathbb{I}(\mathbb{R}^{n \times n})$ be sign-regular and $\sigma_k(A)\sigma_k(B) \ge 0, k = 1(1)n$, for all $\overline{A}, B \in [A]$. Furthermore, suppose $\underline{A} < *\overline{A}$. Then any $A \in [A]$ with $A < *A < *\overline{A}$ is strictly sign-regular.

The matrix interval $[A] = [\underline{A}, \overline{A}] := [e_4e_1^t, I] \in \mathbb{I}(\mathbb{R}^{4 \times 4})$, where e_4 and e_1 are respectively the fourth and the first unit vector of \mathbb{R}^4 and where I is the identity matrix, has totally nonnegative boundary matrices A and A. But [A] contains the matrix $A := I + e_4 e_1^t$, which is nonsingular, but not totally nonnegative because A(2,4;1,2) < 0. Thus this example shows that the statement of Theorem 2 involving merely sign regularity is not true without the assumption (*). Note that A is nonsingular.

Conjecture. The matrix interval [A] is nonsingular and totally nonnegative iff A and A are nonsingular and totally nonnegative.

We have tried hard, without success, to prove this conjecture. However, the conjecture is true for $n \leq 5$, so that the construction of a counterexample is nontrivial. Furthermore, the conjecture is true in the following special case.³

³The conjecture is also true if $\underline{A}, \overline{A} \in T(r, s)$ with T(r, s) from [6], i.e., $\underline{A}, \overline{A}$ are band matrices with special nonsingular totally nonnegative submatrices.

THEOREM 4. Let $[A] = [\underline{A}, \overline{A}] \in \mathbb{I}(\mathbb{R}^{n \times n})$ be tridiagonal, i.e., $0 = \underline{\alpha}_{ij} = \overline{\alpha}_{ij}$ if |i - j| > 1, i, j = 1(1)n. Then [A] is nonsingular and totally nonnegative iff \underline{A} and A are nonsingular and totally nonnegative.

Proof. Let the matrix interval [A] be tridiagonal, let \underline{A} and \overline{A} be nonsingular and totally nonnegative, and let $A \in [A]$. Then $A \ge 0$. By Hadamard's inequality (see Satz 8 in [1, p. 108]) every leading principal minor of \underline{A} and \overline{A} [i.e. $\underline{A}(1,\ldots,i;1,\ldots,i)$ and $\overline{A}(1,\ldots,i;1,\ldots,i)$] is positive. Therefore, any leading principal submatrix of \underline{A} and \overline{A} is totally nonnegative and nonsingular. Then by Lemma 1 and the continuity of the determinant, it follows that also the leading principal minors of A are positive. By a criterion in [1, p. 94] A is totally nonnegative.

We conclude this section with a theorem concerning the existence of totally nonnegative matrices.

THEOREM 5. Suppose that $n \ge 3$, A is a nonsingular totally nonnegative matrix, and there exist $i \in \{1, ..., n-2\}$, $k \in \{2, 3, ..., n-i\}$ such that

$$A\binom{i+1,\ldots,i+k}{i,\ldots,i+k-1} = 0 \tag{8}$$

or

$$A\binom{i,\ldots,i+k-1}{i+1,\ldots,i+k} = 0.$$
(9)

Then there exists no totally nonnegative matrix B with A < *B.

Proof. Suppose $A = (\alpha_{ij})$ is a nonsingular totally nonnegative matrix and (8) holds. By Corollary 9.1 in [4, p. 89], every principal minor of A is positive. Suppose $B = (\beta_{ij})$ is a totally nonnegative matrix with A < *B. Then $\gamma := |\beta_{i+k,i} - \alpha_{i+k,i}| > 0$. From Lemma II in [7] it follows that

$$\det\left(A\begin{bmatrix}i+1,\ldots,i+k\\i,\ldots,i+k-1\end{bmatrix}+(-1)^{2i+k}\gamma e_k e_1^t\right)$$
$$=-\gamma A\binom{i+1,\ldots,i+k-1}{i+1,\ldots,i+k-1}<0,$$

where e_1 and e_k are respectively the first and the kth unit vector of \mathbb{R}^k . The matrix on the left-hand side of the equation is a submatrix of a matrix contained in [A, B]. By Theorem 2, we have thus arrived at a contradiction. If (9) holds we proceed in a similar way.

EXAMPLE. Let the real numbers ψ_i and χ_i , i = l(1)n, have the same strict sign and

$$\frac{\psi_1}{\chi_1} < \frac{\psi_2}{\chi_2} < \cdots < \frac{\psi_n}{\chi_n}.$$

Then the Green's matrix [4, p. 110] $G = (\gamma_{ij})$ defined by

$$\gamma_{ij} := \begin{cases} \psi_i \chi_j & \text{if } i \leq j, \\ \psi_j \chi_i & \text{if } i \geq j \end{cases}$$

is nonsingular and totally nonnegative. Moreover, by [1, p. 90] Equations (8) and (9) hold.

This paper is an extension of some results given in the author's dissertation [2] and in [3].

REFERENCES

- 1 F. R. Gantmacher and M. G. Krein, Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme, Akademie-Verlag, Berlin, 1960.
- 2 J. Garloff, Untersuchungen zur Intervallinterpolation, Dissertation, Freiburger Intervall-Berichte 80/5, Institut f
 ür Angewandte Mathematik, Universit
 ät Freiburg i. Br., 1980.
- 3 J. Garloff, Totally nonnegative interval matrices, in *Interval Mathematics* 1980 (K. Nickel, Ed.), Academic, New York, 1980.
- 4 S. Karlin, Total Positivity, Vol. I, Stanford U.P., Stanford, 1968.
- 5 J. R. Kuttler, A fourth-order finite-difference approximation for the fixed membrane eigenproblem, *Math. Comp.* 25:237-256 (1971).
- 6 K. Metelmann, Ein Kriterium f
 ür den Nachweis der Totalnichtnegativit
 ät von Bandmatrizen, Linear Algebra Appl. 7:163–171 (1973).
- 7 W. E. Roth, On the characteristic polynomial of the product of two matrices, *Proc. Amer. Math. Soc.* 5:1-3 (1954).

Received 6 May 1981; revised 21 October 1981