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ABSTRACT

We consider matrix intervals with respect to a certain *checkerboard” partial
ordering. We show that every real matrix contained in a matrix interval is sign-regular
if two special matrices taken from that matrix interval are sign-regular.

1. NOTATION AND DEFINITIONS

Let A=(a;;) be an n X n matrix. The submatrix of A formed from rows
iy,...,1; and columns j,,...,f, will be denoted by

Bpsenn,iy . L .
Al . . or A[zl,...,zk; 71’---’71(]’
’1""a’k

and its determinant by

Qpsene,iy ) o )
Al ) of A(ys.eosigsfrserenip)-
’13"'9’];

The matrix A is called sign-regular! [4, p. 47] if all nonzero kth-order minors
of A have the same sign 0,(A), k =1(1)n (we set a,(A): =0 if all kth-order
minors vanish). If in this case 0,(A)=0, k=1(1)n, we call A totally
nonnegative. We say that A is strictly sign-regular if A is sign-regular and all
minors of A are nonzero. The definitions and basic properties of these

*Dedicated to Professor R. Krawczyk on the occasion of his sixtieth birthday.
L1t should be noted that the German equivalent of “sign-regular,” namely “zeichenregulir,”
is used in a slightly different sense by Gantmacher and Krein in [1, p. 86].
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matrices were given in [1]; see also [4]. The matrix A will be said to be
inverse-positive if A~! = (a;) exists and ;= 0, 4, j = 1(I)n.

We define A*€R"*" by A*:=DAD, where D:=diag(l,—1,...,
(—D"*1). The transformation * is usually called the “checkerboard transfor-
mation.” As usual, A<B and A<B for A, BER"*" will be understood
entrywise. Let A<*B and A <* B, respectively, if A*< B* and A* < B*,
respectively. The set of matrix intervals with respect to the partial ordering
<* will be denoted by J(R"*"), and its elements by [A] =[A, A,A= (a;)),
A=(a;); [B] =B, B], etc.

A matrix interval [A] will said to be nonsingular [respectively, (strictly)
sign-regular, totally nonnegative] if all the real matrices contained in [A] are
nonsingular [respectively, (strictly) sign-regular, totally nonnegative].

2. PRELIMINARY RESULTS

Lemma 1. If [A]E€ I](R"X")_with 0,:=0,(A)= on(A_) # 0 and all the
nonzero (n — 1yminors of A and A have the same sign o,_ |, then 0,0, _ | A* is
inverse-positive for any A€ [ A]; in particular | A] is nonsingular.

Proof. The proof can be easily given by using the formula for the inverse
of a matrix in terms of its adjoint matrix and by exploiting the following
well-known statement (e.g. [5, Corollary 3.5]): A matrix B is inverse-positive
iff there exist inverse-positive matrices B, B such that B< B < B. u

Remark. Lemma 1 can be used to bound the set of all solutions of
special systems of linear equations with intervals as coefficients [3].

The following lemma shows that the approximation of sign-regular matrices
by strictly sign-regular matrices which is given in Satz 17 in [1, p. 311} can be
done from above and from below with respect to the partial ordering <.

Lemma 2. Let the n X n matrix A = (a;;) be of rank r and sign-regular.
For every £> 0 there exists a strictly sign-regular n X n matrix C=(y;;) such
that for arbitrary 7,€ { — 1,1} we have

_fe(A), k=1(1)r,
ok(C)—{Tk’ k=r+1(1)n, (1)
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and
0<°1(C)(Yif_aii)<5a i,i=1(1)n. (2)

Proof. We follow the proof given in [1, pp. 308, 310-311]. If n =1, the
statement holds trivially. We suppose now n = 2. Let ¢, be the ith unit vector
of R", i.e. ¢;: = §,, where §; is the usual Kronecker delta. In case r = 0 replace
A by the matrix 0,(C)e’e e}, where ¢': = ¢ /3. If A has exactly one nonzero
coefficient, then replace A by A + 0,(A)e'xy’, where x, yER" are defined as
follows:

in case 0,(C)=1, 1=y =e if a,=0,
x:=y:=e, else;

incase 0,(C)=—1, x:=e,, y:=¢, if «,=0,
x:=e,, Yy:—e else.

Put F(n): = (exp[— n(i —§)]), i,7=1(1)n, where n>0. It is known [1, p.
89] that every minor of F(n) is positive. Obviously ¥(n) — I (identity matrix)
as 7 — 00. From the Cauchy-Binet formula [1, pp. 11-12] it follows that the
matrix B=(f,;) defined by B:=F(q)AF(n) has only nonzero kth-order
minors and satisfies

o,(B) =0,(A), k=1(1)r, (3)

and obviously for sufficiently small >0

0<o,(A)B;;—a;)<e. (4)
If r = n, the matrix B fulfills (1) and (2). If r <n we set §: = min{|8;, — a;; |
i, = 1(1)n}. The approximation process of the proof of Satz 17 in [I, p. 311]
yields a matrix C = (y,;) satisfying

o,(B), k=1(1)r,

Tes k=r+1(1)n, ()

Uk(C):{

and
lvi; — Byl <8<¢, i,j=1(1)n. (6)

By (3) and (5), the matrix C fulfills the equation (1), and from (4) and (6) we
obtain (2). ]
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3. CRITERIA FOR SIGN REGULARITY

TueEOREM 1. Let [A]EI(R"*"®). Then
(i) [A] is strictly sign-regular
if and only if
(ii) A and A are strictly sign-regular and o, (A) = oy( A), k=1(1)n.

Proof. 'The implication (i) = (ii) holds by the continuity of the determi-
nant. We suppose now (ii) and A€ [A]. The case n =1 is trivial, and we
consider the case n>1. Because of Theorem 3.3 in [4, p. 60] it suffices to
show that all the minors of A composed from consecutive rows and columns
have the same strict sign o,.

Let p€{0,1,...,n —1}, and assume without loss of generality p = 1. Then
we have fori,j=1(1)n—p

i...it+ <* i it <*) —|i,...,i
Tt (Bt e (L e
—|iesitp = foresitp = forrnsitp

if i+;‘is{even].

odd

The determinants of these two submatrices of A and A have the same strict
sign g, ;. The same holds for the pth-order minors. It follows from Lemma 1
that

i,..,itp
Al . . is nonsingular.
[’)""’+p] gUJ

Finally, for ¢, m€ {1,2,...,n — p}

i,....,i+p

freresitp

I e
g,---qtp ) -
m,....m+p

signA( )ZopH:signA(

TueoreMm 2. Let [A]=[A, A]ENR ™) satisfy
either vi,je{1,...,n} a;=a&; = itijiseven,

or vi,j€(l,...,n} @;=@&,; = i+jisodd.
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Then

(i) [A] is sign-regular (respectively, sign-regular and nonsingular) and
0, (A)o (B)Y=0, k=1(1)n, forall A, BE[A]
if and only if ’

(i) A and _4— are sign-regular (respectively, sign-regular and nonsingular)
and 6, (A)o (A)=0, k=1(1)n.

Proof.2 The statement involving both sign-regular and nonsingular fol-
lows immediately from the other part by Lemma 1.

It suffices to show (ii) = (i) in case n >1. Without loss of generality we
suppose that ol(é),ol(K)>0. By Lemma 2 there exist two sequences of
strictly sign-regular matrices, say {C*},{C"}, C”'=(v{}"), C"'=(¥"),
v=1,2,..., satisfying

kmC™ = A, a; < Yi(iy)
- - i,i=1(1)n, »=12,...,

im C®) = ~ ()
lim C* = &<y

if
and
0 (CP )Y =0, (C™), v,p=12,..., k=1(1)n.

We will show that these sequences contain subsequences, say {A™)}, {A®)},
with

AP < * A,

0i(A”) = 0, (A”), k:l(l)n} y=12,.... )

For brevity, let
Y 2 o
r.= {(z,g)e {1,...,n} ;= a“}.
For (i,7)&T and », <v, », sufficiently large, we have
o, <y <a,<yy’ if i+jiseven,

Ei,.<7i<i”’<g”<z}f”’ if i47jisodd.

2The statement of Satz 4.5 (i.e. Theorem 2 formulated for the special case of totally
nonnegative matrices) in [2] is incomplete. The assumption ( +) is missing there.
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Without loss of generality we suppose that for every (i,j)€T, i +§ is even.
Then there exists », = v, such that

R

o,

Zig

S AR for (i,j)el.

if if

Let AV = Co) A, =00 A® ., = C*V We continue in th
obtain the subsequences { A}, {A®)} satisfying (7).
From Theorem 1 it follows that the interval [ A*), A®)] is strictly sign-reg-

ular. By taking the limit, the proof of the theorem is completed. |

Remark. If [A] is sign-regular and nonsingular, we have already
0, (A)o (B)=0, k=1(1)n, for all A, BE[A]. This follows from the continu-
ity of the function

e
> A( ! ,k) for fixed ke ({l1,...,n}.
<ip \beeodk

i<
< <

In a similar way one shows

TueoreM 3. Let [A]=[A, A]€1(R"") be sign-regular and
0,(A)o(B)=0, k=1(1)n, for all A, BE[A]. Furthermore, suppose A <<* A.
Then any AE[A] with A <* A <* A is strictly sign-regular.

The matrix interval [A] =[A, A]: = [e,el, I|EWR ***), where e, and e,
are respectively the fourth and the first unit vector of R* and where I is the
identity matrix, has totally nonnegative boundary matrices A and A. But [ A]
contains the matrix A: =1+ eel, which is nonsingular, but not totally
nonnegative because A(2,4;1,2) < 0. Thus this example shows that the state-
ment of Theorem 2 involving merely sign regularity is not true without the
assumption ( *). Note that A is nonsingular.

Conjecture. The matrix interval [A] is nonsingular and totally non-
negative iff A and A are nonsingular and totally nonnegative.

We have tried hard, without success, to prove this conjecture. However, the
conjecture is true for n <5, so that the construction of a counterexample is
nontrivial. Furthermore, the conjecture is true in the following special case.

3The conjecture is also true if A, A€ T(r,s) with T(r,s) from [6], ie., A, A are band
matrices with special nonsingular totally nonnegative submatrices.
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TueoreM 4. Let [A]=[A, A]EIR™™") be tridiagondl, i.e., 0=gqa,;=

a;; if |i—j| > 1,4, j=1(1)n. Then [ A] is nonsingular and totally nonnegative
iff A and A are nonsingular and totally nonnegative.

Proof. Let the matrix interval [A] be tridiagonal, let A and A be
nonsingular and totally nonnegative, and let A€[A]. Then A=0. By
Hadamard’s inequality (see Satz 8 in [1, p. 108]) every leading principal
minor of A and A [ie. A(L,...,i;1,...,i) and A(L,...,i;1,...,1)] is positive.
Therefore, any leading principal submatrix of A and A is totally nonnegative
and nonsingular. Then by Lemma 1 and the continuity of the determinant, it
follows that also the leading principal minors of A are positive. By a criterion
in [1, p. 94] A is totally nonnegative. ]

We conclude this section with a theorem concerning the existence of
totally nonnegative matrices.

THEOREM 5. Suppose that n =3, A is a nonsingular totally nonnegative
matrix, and there exist i€ {1,...,n —2}, k€(2,3,...,n — i} such that

i+1,...,i+k)
A(i,...,H—k—l)_O ®)
or
iyonitk—1Y
A(i+1,...,i+k)_0' 9)

Then there exists no totally nonnegative matrix B with A <*B.

Proof. Suppose A = (a;;) is a nonsingular totally nonnegative matrix and
(8) holds. By Corollary 9.1 in [4, p. 89], every principal minor of A is positive.
Suppose B=(f;,) is a totally nonnegative matrix with A<*B. Then y: =
|Bi ki — @1 ;|>0. From Lemma II in [7] it follows that

i+1,...,i+k 2i+k ¢
det(A[i,...,i+k—1]+( D7 e

i+l,...,i+tk—1

<
i+1,...,itk—1 0,
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where ¢, and e, are respectively the first and the kth unit vector of R*. The
matrix on the left-hand side of the equation is a submatrix of a matrix
contained in [A, B]. By Theorem 2, we have thus arrived at a contradiction.
If (9) holds we proceed in a similar way. [ ]

ExampLE. Let the real numbers ¢, and x;, i =1(1)n, have the same
strict sign and

¥

LU - S (Y
X1 X2 Xn

Then the Green’s matrix [4, p. 110] G =(y,;) defined by

_ Yix; if i<,
T Vg, i iz

is nonsingular and totally nonnegative. Moreover, by [1, p. 90] Equations (8)
and (9) hold.

This paper is an extension of some results given in the author’s disserta-
tion [2] and in [3].
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